



# Accessories































### **Rotary / Linear Type** Pneumatic - Pneumatic Valve Positioner

Catalogue No.



"aira" Pneumatic-Pneumatic Positioner (3-15 pst / rotary off linear type) are advanced control devices which provide unparalleled stability in difficult environment.

### Description

The "aira" APP-1200-R/L sesries positioners converts a controller output (usually 3 to 15 psig to Linearly/Rotary proportional Trave/Rotational & Pneumatic outputs. The Positioners are based on a force balance desing for control applications that requires a high degree of reliability & repeatability at an economical cost. Optional NEMA 4X (IP65/IP66)-explosion proof versions allows for splashdown/explosive atmosphere and outdoor installation.

The "aira" APP-1200-R/L series positioners are used for Liner/Rotary movement with ranges 3-9 and 9-15 psig.control sigal, when you select split range. Standard rang is 3-15 psig. The positioners can handle the supply pressure upto 100 psig for higher pressure Industrial pneumatic and process control system requirements.

### Principle of Operation

The operation of "aira" APP-1200-R/L series positioners is based on a force balanced system. Tension on the feedback spring provides feedback to the positioner which will vary as the actuator shaft rotates with cam. The spring Loading force is applied through the cam shaft & cam to the positioner's instrument signal capsule through the balance beam.

Output form the controller (usually 3-15 Psig) is applied to the diaphragm in the instrument signal capsule serving as a force balance membrane, matching the actuator shaft position to the instrument signal.

### Split Ranging

operational manual.

### Mounting

If split ranging is required may be mounted on Linear The "aira" APP-1200-R/L FC series positioners may be Actuator/Rotary Actuator as per installation and mounted on Linear Actuator/Rotary Actuator as per installation and operational manual

### **Field Reversible**

To change form direct acting to reverse acting simply reverse the cam and fix it on cam shaft and make sure of the signal SPAN which is printed on the cam and recalibrate for Actuator fully open or close position incase of Pneumatic to Pneumatic.

### **Features**

- Designed block build structure for maintenance and repair
- Precise calibration with simple SPAN and ZERO adjustments
- Simple conversion to Direct Acting or Reverse Acting
- Split range control available by simple adjustments without changing parts
- Simple structure for feedback connection
- Corrosion-resistant alluminium die cast body
- Sensitive response for high performance

### Vibration resistant design

- Stainless Steel Gauge Standard
- A restricted pilot valve orifice kit for small actuators included
- Optional built-in limit switched or 4-20 mA position transmitter for feedback
- Optional directly-mountable positioner
- Proved the reliability through over 5,00,000 times of repeat test & Vibration test.

### **Integrated Characteristics**

- Suitable for Rotary / Linear Actuators.
- Low Air Consumption.
- Corrosion-Resistance Aluminium Diecast Body.
- Simple Conversion to Direct Acting or Reverse Acting.
- Precise Calibration with simple SPAN . and Zero Adjustments.
- Suitable for Single/Double acting Actuators.
- Split Ranging.
- Optional Built-in Limit Switches or 4-20mA Position
- Transmitter for feedback.
- Extremely Vibration Resistance Design.
- Easy Maintenance.

### Application

The "aira" APP - 1200 R/E Positioners converts pneumatic/electrical signal to a pneumatic output which can be used to operate the following:

- Valve, Valve-Actuators
- Damper and Louver Actuators
- Air-Cylinders
- Relays
- Clutches
- Web Tensioners and Brakes

### USED IN:

- Petrochemical Processing Systems
- Energy Management
- Hvac Systems
- Textile Processing Systems
- Phamraceutical Processing System
- Paper & Pulp Handling Controls

# **Technical Specification Table**

|                                | Linear                                |               | Ro     | tary   |
|--------------------------------|---------------------------------------|---------------|--------|--------|
| MODEL                          | Single                                | Double        | Single | Double |
|                                | APP-                                  | 1200-L        | APP-1  | 200-R  |
| Input Signal                   | 3~15psi (0.2-1.0 kgf/cm²) (NOTE 1)    |               |        | 1)     |
| Supply Air Pressure            | 100 psi N                             | 1ax. (7.0 kgf | /cm²)  |        |
| Standard Stroke                | 10~80mr                               | n (NOTE 2)    |        |        |
| Air Piping Connection          | 1/4" NPT                              | (F)           |        |        |
| Ambient Temperature            | -20 °C to                             | 70 °C         |        |        |
| Pressure Gauge                 | Stainless Steel                       |               |        |        |
| Explosion-proof Classification | Exia II BT6, Exdm II BT6, Exdm II CT6 |               |        |        |
| Degree of Protection           | IP66                                  |               |        |        |
|                                | Stainless                             | Steel 0-2 kg  | /cm²   |        |
| Pressure Gauge                 | 0-4 kg/cm²                            |               |        |        |
|                                | 0-10 kg/cm <sup>2</sup>               |               |        |        |
| Output Characteristics         | Linear                                |               |        |        |
| Linearity                      | Within ±                              | 1.0% F.S.     |        |        |
| Sensitivity                    | Within 0.                             | 2% F.S.       |        |        |
| Hysteresis                     | Within 0.                             | 2% F.S.       |        |        |
| Repeatability                  | Within ± 0.75% F.S.                   |               |        |        |
| Air Consumption                | 5.0 LPM (1.4 kg/cm2) Supply           |               |        |        |
| Flow Capacity                  | 80 LPM (1.4 kg/cm2) Supply            |               |        |        |
| Material                       |                                       | ım Diecast B  |        |        |
| Weight                         | 1.8 Kg. (A                            |               |        |        |

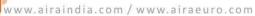
NOTE: 1. 1/2" split range can be adjusted

2. Feedback lever for stroke 80-150mm is available (PPL)






















# Rotary / Linear Type Elector - Pneumatic **Valve Positioner**



"aira" Electro-Pneumatic Positioner (4-20 m Amp, linear and rotary type) are advanced control devices which provide unparalleled stability in difficult environment.

### Description

The "aira" AEP-1000-R/L series Electro-pneumatic are used as final controlling element for operation of pneumatic Rotary/linear valve actuators in correspondence with an input Signal of 4-20mA DC or split ranges.

The Positioners are based on a force balance design for control application that requires a high degree of reliability and repeatability at an economical cost.

The Positioners can handle the supply pressure up to 100 psig for higher pressure industrial pneumatic and process control system requirements.

### Principle of Operation

The operation of "aira" AEP-1000-R/L series positioners is based on a force balanced system. Tension on the feedback spring provides feedback to the positioner which will vary as the actuator shaft rotates with cam. The spring Loading force is applied through the cam shaft & cam to the positioner's instrument signal capsule through the balance beam.

Input of 4-20mA DC is applied to the instrument and corresponding output is applied to the control capsule serving as force balance membrane and matching the actuator shaft position to the instrument signal.



To change form direct acting to Designed as block build structure for maintenance and repair printed on the cam and recalibrate for <a> Simple structure for feedback connection</a> incase of Pneumatic to Pneumatic. Sensitive response for high performance For Electro-Pneumatic change • Vibration resistant design current signal input leads form • Stainless Steel Gauge Standard and above cam reverse and • Optional directly-mountable positioner recalibrate the Positioner.

### **Features**

- reverse acting simply reverse the Precise calibration with simple SPAN and ZERO adjustments
- cam and fix it on cam shaft and make Simple conversion to Direct Acting or Reverse Acting
- sure of the signal SPAN which is Split range control available by simple adjustments without changing parts
- Actuator fully open or close position Corrosion-resistant alluminium die cast body
- positive to negative and change A restricted pilot valve orifice kit for small actuators included
- current signal form 4-20 to 20-4 over Optional built-in limit switched or 4-20 mA position transmitter for feedback

  - Proved the reliability through over 5,00,000 times of repeat test & Vibration test.

### Mounting

The "aira" AEP-1000-R/L series positioners may be mounted on Linear Position Transmitter (4-20mA DC.) Actuator/Rotary Actuator as per installation and operational manual.

### Options Available

- Two limit Switches.
- Valve, Valve-Actuators
- Damper and Louver Actuators
- Air-Cylinders
- Relays
- Clutches
- Web Tensioners and Brakes

### Technical Specification Table

|                                | Lin                                   | ear                 | Rotary     |        |  |
|--------------------------------|---------------------------------------|---------------------|------------|--------|--|
| MODEL                          | Single                                | Double              | Single     | Double |  |
|                                | AEP-1000-L AEP-1000                   |                     |            | L000-R |  |
| Input Signal                   |                                       | 4~20 mA DC (NOTE 1) |            |        |  |
| Input Resistance               |                                       | 235±                | 15         |        |  |
| Supply Air Pressure            | 3                                     | 20~100psi (7        | .0 kg/cm²) |        |  |
| Standard Stroke                |                                       | 10~80mm (           | NOTE 2)    |        |  |
| Air Piping Connection          |                                       | 1/4 NPT             |            |        |  |
| Conduit Connection             |                                       | ½ NPT               | (F)        |        |  |
| Explosion-proof Classification | Exia II BT6, Exdm II BT6, Exdm II CT6 |                     |            |        |  |
| Degree of Protection           | IP66                                  |                     |            |        |  |
| Ambient Temperature            | -20°C to 70°C                         |                     |            |        |  |
|                                | Stainless Steel 0-2 kg/cm2            |                     |            |        |  |
| Pressure Gauge                 | 0-4 kg/cm <sup>2</sup>                |                     |            |        |  |
|                                |                                       | 0-10 kg             |            |        |  |
| Output Characteristics         |                                       | Linear / F          |            |        |  |
| Linearity                      |                                       | Within ± 1          |            |        |  |
| Sensitivity                    |                                       | Within 0.           |            |        |  |
| Hysteresis                     |                                       | Within 0.7          |            |        |  |
| Repeatability                  |                                       | Within ± 0          |            |        |  |
| Air Consumption                | 5.0 LPM (1.4 kg/cm²) Supply           |                     |            | v      |  |
| Flow Capacity                  | 80 LPM (1.4 kg/cm²) Supply            |                     |            |        |  |
| Material                       |                                       | lluminium Di        |            |        |  |
| Weight                         |                                       | Ke With at          |            | ,      |  |

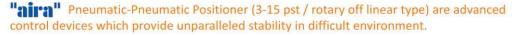
NOTE: 1. 1/2 split range can be adjusted

2. Feedback lever for stroke 80-150mm is available (PPL)

### Integrated Characteristics

- Suitable for Rotary / Linear Actuators.
- Low Air consumption.
- No resonance at 5-200Hz.
- Prevents hunting by using Orifice for small size actuator.
- Simple Conversing to Direct Acting or reverse Acting.
- Precise Calibration with simple SPAN and Zero Adjustments.
- Suitable for Single/Double acting Actuators.
- Can control 1/2 split range with simple operation without replacing any parts.
- Extremely Vibration Resistance Desing.
- Easy Maintenance.
- Corrosion-Resistance Aluminium Diecast Body.

### Application


The "aira" AEP - 1000 R/E Positioners Petrochemical Processing Systems, Energy operate the following:

### Used In

converts pneumatic/electrical signal to a Management, HVAC Systems, Textile Processing pneumatic output which can be used to Systems. Phamaceutical Processing System, Paper & Pulp Handling Controls.







Electro - Pneumatic Positioner is used for operation of pneumatic Multiple springs diaphragm actuators by means of electrical or control system with an output signal of DC 4 - 20 mA or split rages



- CE, CIMFR, BIS, ISI, ISO Certified, approved
- It is connected with Diaphragm actuator directly without Air pipe, and can be mounted the Filter Regulator on.
- Sturdy, tubeless and vibration resistant design
- There is no resonance at 5-200Hz.
- The change of RA/DA acting is convenient. It is able to apply to single or double acting actuator.
- It is possible to prevent the hunting with orifice to the small size
- It is economical due to less air consumption.
- It is able to control the ½ split range with simple operation with replacement of parts.



| TYPE               | AEP - 1500 - L                             |  |  |
|--------------------|--------------------------------------------|--|--|
|                    | Rotary Type (can feedback)                 |  |  |
| ITEM               | Single Double                              |  |  |
| put Signal         | 4~20 mA DC                                 |  |  |
| mpedance           | 250±15Ω                                    |  |  |
| upply Air          | 1.4~7kg f/cm2 (20~100psi)                  |  |  |
| troke              | 10~150mm                                   |  |  |
| ir Connection      | PT(NPT) 1/4                                |  |  |
| auge Connection    | PT(NPT) 1/8                                |  |  |
| onduit             | PF ½ (G1/2)                                |  |  |
| xplosion proof     | ExdllBT6, ExdllCT6, ExiallT6               |  |  |
| rotection          | IP66                                       |  |  |
| mbient temperature | -200C~70°C                                 |  |  |
| inearity           | ± 1% F.S.± F.S.                            |  |  |
| ysteresis          | ± 1% F.S.                                  |  |  |
| ensitivity         | ± 0.2% F.S.± 0.5% F.S.                     |  |  |
| epeatability       | ± 0.5%                                     |  |  |
| r Consumption      | 3LMP(Sup=1.4kgf/cm <sup>2</sup> , 20psi)   |  |  |
| ow Capacity        | 80 LPM (Sup=1.4kgf/cm <sup>2</sup> , 20psi |  |  |
| 1aterial           | Alluminium alloy                           |  |  |
| Veight             | 2.8 Kg.(6.2lb)                             |  |  |



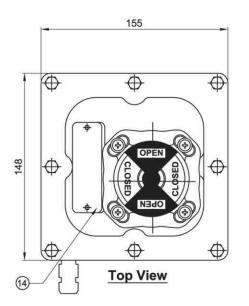


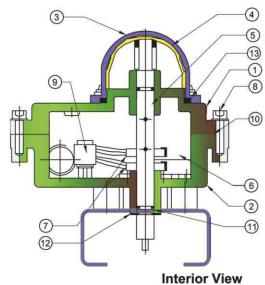


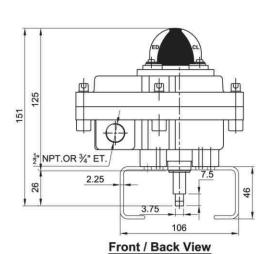


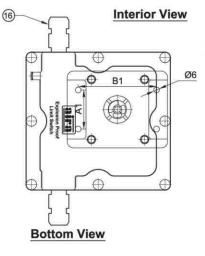







| Туре                    | Mechanical Switch X 2                                  |                       | Proximity Sensors P&F Make |                                   |  |  |
|-------------------------|--------------------------------------------------------|-----------------------|----------------------------|-----------------------------------|--|--|
| Model                   | SLSB-WP-01                                             | SLSB-WP-02            | SLSB-WP-03                 | SLSB-WP-04                        |  |  |
| Switch                  | Honeywell V15                                          | Honeywell V15         | NJ2-V3-N (Upto 8V)         | NBB3-V3-Z4<br>(Upto 10 to 60 VDC) |  |  |
| Туре                    | 1 NO + 1 NC                                            | 2 NO + 2 NC           |                            | ****                              |  |  |
| Switch Rating           | AC 250V 3A, 125V 5A<br>DC 250V 0.2A, 125V 0.4A, 30V 4A |                       |                            |                                   |  |  |
| Enclosure<br>Protection | IP 67                                                  |                       |                            |                                   |  |  |
| Ambient Temp.           | -20 °C ~ 80 °C                                         |                       |                            |                                   |  |  |
| Conduit Entry           | NPT 1/2" (PT 1/2",                                     | PF 1/2, M20, PG 13.5) |                            |                                   |  |  |
| Terminal                | 8 Points                                               |                       |                            |                                   |  |  |
| Mounting Bracket        | Namur VDI / VDE 3845, ISO 5211                         |                       |                            |                                   |  |  |
| Material                | Aluminum Pressure Die Cast                             |                       |                            |                                   |  |  |





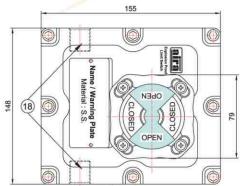




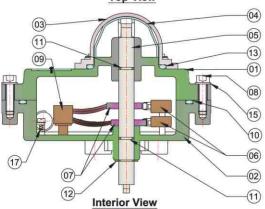
| Sr. No. | Description                      | Material                      |
|---------|----------------------------------|-------------------------------|
| 1       | Enclosure Cover                  | Aluminium Pressure Die Cast   |
| 2       | Enclosure Cover                  | Aluminium Pressure Die Cast   |
| 3       | Visual Position<br>Indicator Dom | Poly carbonate ( Antistatic ) |
| 4       | Position Indicator               | ABS                           |
| 5       | Shaft (Operating Rod)            | S. S. 304                     |
| 6       | Switches                         | STD.                          |
| 7       | Splined Cam                      | Nylon                         |
| 8       | Allen Head Bolt                  | S. S. 304                     |
| 9       | Terminal Block                   | STD.                          |
| 10      | 'O' Ring for Cover               | NBR                           |
| 11      | 'O' Ring for Shaft               | NBR                           |
| 12      | Circlip                          | S. S.                         |
| 13      | 'O' Ring for Dom                 | NBR                           |
| 14      | Name / Warning Plate             | Stainless Steel               |
| 15      | Spring Washer                    | Stainless Steel               |
| 16      | Cable Gland                      | M. S.                         |

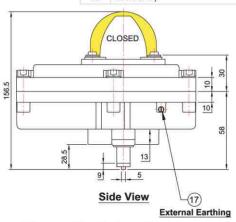







| Type                    | Mechanical Switch X 2                                  |                                |               | Proximity Sensors P&F Make   |                                    |  |  |
|-------------------------|--------------------------------------------------------|--------------------------------|---------------|------------------------------|------------------------------------|--|--|
| Model                   | MLS-FLP-01                                             | MLS-FLP-02                     | MLS-FLP-03    | MLS-FLP-04                   | MLS-FLP-05                         |  |  |
| Switch                  | Honeywell V15                                          | Honeywell V15<br>(PCB TYPE)    | Honeywell V15 | NJ2-V3-N<br>(Upto 8 Voltage) | NBB3-V3-Z4<br>(Upto 10V To 60V DC) |  |  |
| Type                    | 1 NO + 1 NC                                            | 1 NO + 1 NC                    | 2 NO + 2 NC   |                              | ****                               |  |  |
| Switch Rating           | AC 250V 3A, 125V 5A<br>DC 250V 0.2A, 125V 0.4A, 30V 4A |                                |               |                              |                                    |  |  |
| Enclosure<br>Protection | IP 67                                                  | IP 67                          |               |                              |                                    |  |  |
| Ambient Temp.           | -20 °C ~ 80 °C                                         |                                |               |                              |                                    |  |  |
| Conduit Entry           | NPT 1/2" (PT 1/                                        | 2, PF 1/2, M20, P              | G 13.5)       |                              |                                    |  |  |
| Terminal                | 8 Points                                               | VINCUE OF AN                   |               |                              |                                    |  |  |
| Mounting Bracket        | Namur VDI / V                                          | Namur VDI / VDE 3845, ISO 5211 |               |                              |                                    |  |  |
| Material                | Aluminum Pressure Die Cast                             |                                |               |                              |                                    |  |  |


### Feature:


- Easy settable colour coded cam
- Serrated cams locked together ensures adjusted setting secured against any vibration
- Special PCB eliminates all wiring from the switch element to the terminals, Protection against short circuit
- All Fasteners in Stainless Steel
- Water, Rain Proof to IP 67
- Additional mounting hole threaded

| Sr. No. | Description                                       | Material                                    |  |
|---------|---------------------------------------------------|---------------------------------------------|--|
| 1       | Enclosure Cover                                   | Aluminium Pressure Die Cast                 |  |
| 2       | Enclosure Housing                                 | Aluminium Pressure Die Cast                 |  |
| 3       | Position Indicator Dom<br>(External of Enclosure) | Poly carbonate ( Antistatic )               |  |
| 4       | Position Indicator (External of Enclosure)        | ABS ( Antistatic )                          |  |
| 5       | Shaft (Operating Rod)                             | S. S. 304                                   |  |
| 6       | Switch                                            | Honey Well / Cherry / Omron / Turck / P & F |  |
| 7       | Splined Cam                                       | Cast Aluminium Alloy                        |  |
| 8       | Allen Head Bolt                                   | M6 X 20 Lenght Stainless Steel              |  |
| 9       | Terminal Block                                    | STD.                                        |  |
| 10      | 'O' Ring for Cover                                | NBR                                         |  |
| 11      | 'O' Ring for Shaft                                | NBR                                         |  |
| 12      | Circlip                                           | S. S. Spring Steel                          |  |
| 13      | 'O' Ring for Dom                                  | NBR                                         |  |
| 14      | Name / Warning Plate                              | Stainless Steel                             |  |
| 15      | Spring Washer                                     | Stainless Steel                             |  |
| 16      | Internal Earthing                                 | M4 X 8 L Stainless Steel                    |  |
| 17      | External Earthing                                 | M4 X 8 L Stainless Steel                    |  |
| 18      | Cable Entry                                       | M20 - 6H / Optional Entry 1/2" NPT 6H       |  |

























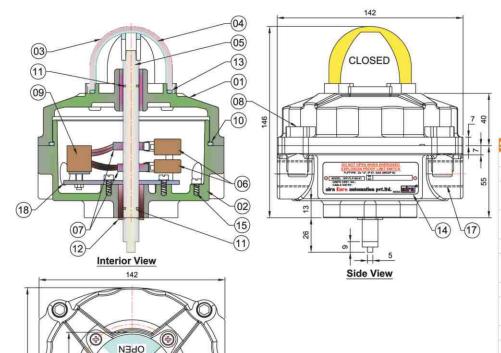




| Туре                    | Mechanical Switch X 2                                  |                             |               | Proximity Sensors P&F Make   |                                    |  |
|-------------------------|--------------------------------------------------------|-----------------------------|---------------|------------------------------|------------------------------------|--|
| Model                   | LS4-FLP-01                                             | LS4-FLP-02                  | LS4-FLP-03    | LS4-FLP-04                   | LS4-FLP-05                         |  |
| Switch                  | Honeywell V15                                          | Honeywell V15<br>(PCB TYPE) | Honeywell V15 | NJ2-V3-N<br>(Upto 8 Voltage) | NBB3-V3-Z4<br>(Upto 10V To 60V DC) |  |
| Туре                    | 1 NO + 1 NC                                            | 1 NO + 1 NC                 | 2 NO + 2 NC   |                              |                                    |  |
| Switch Rating           | AC 250V 3A, 125V 5A<br>DC 250V 0.2A, 125V 0.4A, 30V 4A |                             |               |                              |                                    |  |
| Enclosure<br>Protection | IP 67                                                  |                             |               |                              |                                    |  |
| Explosion Proof         | Ex d IIC T6                                            |                             |               |                              |                                    |  |
| Ambient Temp.           | -20 °C ~ 80 °C                                         |                             |               |                              |                                    |  |
| Conduit Entry           | NPT 3/4" (PT 3/                                        | 4, M20)                     |               |                              |                                    |  |
| Terminal                | 8 Points                                               |                             |               |                              |                                    |  |
| Mounting Bracket        | Namur VDI / VDE 3845, ISO 5211                         |                             |               |                              |                                    |  |
| Material                | Stainless Steel 304 ( Stainless Steel 316 On Request ) |                             |               |                              |                                    |  |

### Salient Feature:

- Visual Position Indicator
- 6 Contacts of Terminal Ports
- Compatibility with any rotary motion actuator ISO 5211


OPEN

**Top View** 

PCD 78

- Easy adjustment of cam position
- Dual 1/2" Conduit entries

134

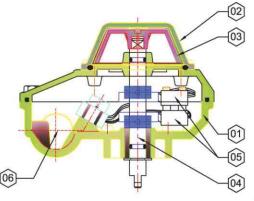


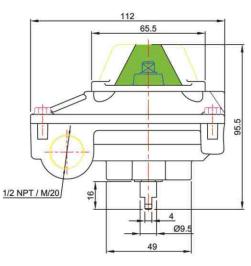


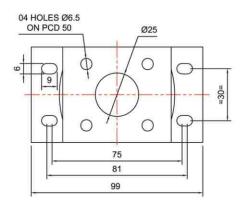
| sr. No. | Description                                   | Material                                             |  |
|---------|-----------------------------------------------|------------------------------------------------------|--|
| 1       | Enclosure Cover                               | CF8 / CF8M                                           |  |
| 2       | Enclosure Housing                             | CF8 / CF8M                                           |  |
| 3       | Visual Position<br>Indicator Dom              | Poly carbonate ( Antistatic )                        |  |
| 4       | Position Indicator<br>(External of Enclosure) | ABS ( Antistatic )                                   |  |
| 5       | Shaft (Operating Rod)                         | S. S. 304                                            |  |
| 6       | Switches                                      | Honey Well / Cherry / Omron<br>Turck / P & F         |  |
| 7       | Splined Cam                                   | Plastic                                              |  |
| 8       | Hexgon Socket Head<br>Cap Screw               | M6 X 20 Length<br>Stainless Steel                    |  |
| 9       | Terminal Block                                | STD.                                                 |  |
| 10      | 'O' Ring for Cover                            | NBR                                                  |  |
| 11      | 'O' Ring for Shaft                            | NBR                                                  |  |
| 12      | Circlip                                       | S. S.                                                |  |
| 13      | 'O' Ring for Dom                              | NBR                                                  |  |
| 14      | Name / Warning Plate                          | Stainless Steel                                      |  |
| 15      | Internal Earthing                             | M4 X 8 L Stainless Steel                             |  |
| 16      | Cable Entry                                   | M20 - 6H (Optional Entry<br>1/2", 3/4" NPT, 3/4" ET) |  |
| 17      | Mounting Plate                                | Bakelight (PCB)                                      |  |
| 18      | Dom Fitting Screw                             | M4 X 10L Stainless Steel                             |  |



# WeatherProof **Limit Switch Box**





- Visual Position Indicator
- 6 Contacts of Terminal Ports
- Compatibility with any rotary motion actuator ISO 5211
- Easy adjustment of cam position
- Dual 1/2" Conduit entries

| Type                    | Mechanical Switch X 2                                 | Mechanical Switch X 2 Proximity Sensors P&F M |                                  |  |  |
|-------------------------|-------------------------------------------------------|-----------------------------------------------|----------------------------------|--|--|
| Model                   | MLSB-WP-01                                            | MLSB-WP-02                                    | MLSB-WP-03                       |  |  |
| Switch                  | Honeywell ZM                                          | NJ2-V3-N<br>(Upto 8 Voltage)                  | NBB-V3-Z4<br>(Upto 10 to 60V DC) |  |  |
| Туре                    | 1 NO + 1 NC                                           | ****                                          | manus.                           |  |  |
| Switch Rating           | AC 250V 3A, 125V 5A<br>DC 250V 0.2A, 125V 0.4A, 30V 4 | A                                             |                                  |  |  |
| Enclosure<br>Protection | IP 67                                                 |                                               |                                  |  |  |
| Ambient Temp.           | -20 °C ~ 80 °C                                        |                                               |                                  |  |  |
| Conduit Entry           | NPT 1/2" (PT 1/2, PF 1/2, M20, I                      | PG 13.5)                                      |                                  |  |  |
| Terminal                | 8 Points                                              |                                               |                                  |  |  |
| Mounting Bracket        | Namur VDI / VDE 3845, ISO 5211                        |                                               |                                  |  |  |
| Material                | Aluminium Pressure Die Cast                           |                                               |                                  |  |  |









72.2 60.7

| Sr. No. | Description                                         | Material                          | Qty |
|---------|-----------------------------------------------------|-----------------------------------|-----|
| 1       | Body                                                | Aluminium Die Cast                | 1   |
| 2       | Position Indicator Dom<br>( External of Enclosure ) | Poly Carbonate                    | 1   |
| 3       | Position Indicator (External of Enclosure)          | Yellow / Black On / Off Indicator | 1   |
| 4       | Shaft (Operating Rod)                               | S. S.                             | 1   |
| 5       | Switch                                              | 1 No + 1 NC / 2 Nos. (Honeywell)  | 2   |
| 6       | Cable Entry                                         | PVC                               | 2   |
| 7       | Internal Earthing                                   | Std.                              | 1   |





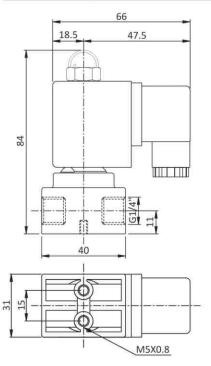










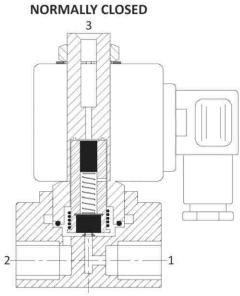







| Technical Speci | fication               |                               |                       |  |  |  |
|-----------------|------------------------|-------------------------------|-----------------------|--|--|--|
| Size            | 1/4"                   |                               |                       |  |  |  |
| Model           | AJDS-08-202            | AJDS-09-202                   | AJDS-10-202           |  |  |  |
| Orifice         | 2.5 mm                 | 2 mm                          | 1.2 mm                |  |  |  |
| Pressure        | 7 Kg/cm <sup>2</sup>   | 10 Kg/cm²                     | 20 Kg/cm <sup>2</sup> |  |  |  |
| Flow            | 180                    | 140                           | 60                    |  |  |  |
| Temperature     | Upto 55 °C             |                               |                       |  |  |  |
| Leakage         | Bubble Tight           | Bubble Tight                  |                       |  |  |  |
| Media           | Air ( Filtered & Lubri | Air ( Filtered & Lubricated ) |                       |  |  |  |
| Voltage         | 24, 48, 110, 230V AC   | C / 12, 24, 48, 110V DC       |                       |  |  |  |






(5)

6

# NORMALLY CLOSED 1

1 - Inlet 2 - Outlet 3 - Exhaust



| Sr. No. | Description       | Material                    |
|---------|-------------------|-----------------------------|
| 1       | Body              | Aluminium Pressure Die Cast |
| 2       | "O" - Ring        | NBR                         |
| 3       | Armature Assembly | Standard Steel              |
| 4       | Check Nut         | Steel Plated                |
| 5       | Coil              | "F" Class                   |
| 6       | DIN Connector     | DIN 43650 A                 |

Note: Since, constant worldwide advancement in technology, We keep our rights reserved to make changes time to time in Technical specifications and Dimensions without prior notice. Pub. on: January, 2015 (Rev.-01)

(1)

SIZE :

TYPE :

WATTS :

SR.No.:

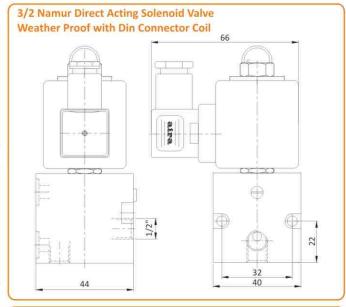
MODEL : AMV-NAM-220

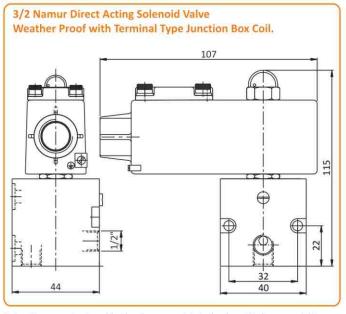
VOLTS : 230 V AC

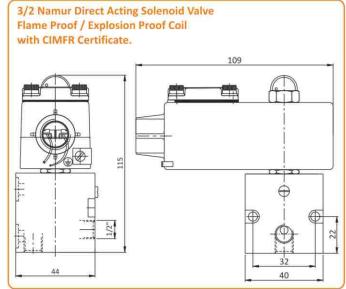
# **Direct Acting Solenoid Valve**

Offers 3/2 Way Namur Solenoid Valve open and shuts by given electrical single of AC & DC outputs supply air pressure to valve or changes the output port directions.

| Item - Typ      | oe .        | NAM-SA-32                    |  |  |  |
|-----------------|-------------|------------------------------|--|--|--|
| Coil Volta      | ge          | All Std. Voltage Available   |  |  |  |
| Frequency       |             | 50 - 60 Hz                   |  |  |  |
| Connection Type |             | 1/4"                         |  |  |  |
| Conduit         |             | PF 1/2"                      |  |  |  |
| Coil Insul      | ation Grade | Class "F"                    |  |  |  |
| Ambient         | Std.        | -20 °C ~ 70 °C (-4 ~ 158 °F) |  |  |  |
| Temp.           | Explosion   | -20 °C ~ 50 °C (-4 ~ 122 °F) |  |  |  |
| Body Mat        | terial      | Aluminium ( SS On Request )  |  |  |  |
| Internal P      | arts arts   | Aluminium / SS               |  |  |  |
| Seals           |             | NBR ( Viton On Request )     |  |  |  |
| Working         | Pressure    | Upto 10 BAR                  |  |  |  |


### Feature:


- Designed to be Ex d IIC T6 explosion proof grade.
- Easy replacement of coil as both AC and DC type use same enclosure.
- Can test the operation in manual switch without power source.
- High durability as valve body is pneumatic pressure operating type.
- Can be directly mounted on an actuator. ( NAMUR Design )
- Ideally Suited for spring return actuator for on / off duty dust cap fitted on exhaust ports.
- Interchangeable of AC and DC Coils
- Manual Over Ride Switch























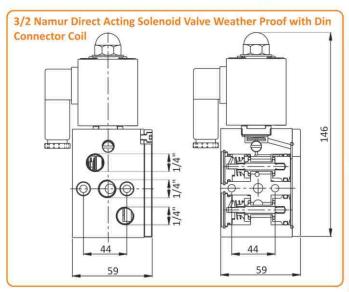












### "aira"

Offers 3/2 & 5/2 Way Convertible Poppet Type Namur Solenoid Valve. Opens and shuts by given electrical signals AC or DC, outputs supply air pressure to valve (Actuator) or changes the output port direction.

| Item - Ty             | oe        | OTX-PPT-32 OTX-PPT-5        |                |  |  |
|-----------------------|-----------|-----------------------------|----------------|--|--|
| Coil Volta            | ge        | All Std. Voltage Available  |                |  |  |
| Frequenc              | у         | 50 - 60 Hz                  |                |  |  |
| Connecti              | on Type   | 1/4"                        |                |  |  |
| Conduit               |           | PF 1/2"                     |                |  |  |
| Coil Insulation Grade |           | Class "F"                   |                |  |  |
| Ambient               | Std.      | -20 °C ~ 70 °C (-4 ~ 158 °F |                |  |  |
| Temp.                 | Explosion | -20 °C ~ 50 °C              | (-4 ~ 122 °F)  |  |  |
| Body Ma               | terial    | Aluminium ( S               | S On Request ) |  |  |
| Internal F            | arts      | Aluminium / SS              |                |  |  |
| Seals                 |           | NBR ( Viton On Request )    |                |  |  |
| Working               | Pressure  | Upto 10 BAR                 |                |  |  |

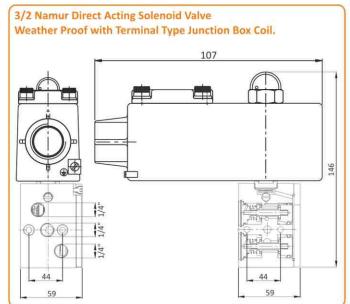
### Feature:

- Designed to be Ex d IIC T6 explosion proof grade.
- Easy replacement of coil as both AC and DC type use same enclosure.
- Can test the operation in manual switch without power source.
- High durability as valve body is pneumatic pressure operating type.
- Can be directly mounted on an actuator. ( NAMUR Design )
- Ideally Suited for spring return actuator for on / off duty dust cap fitted on exhaust ports.
- Interchangeable of AC and DC Coils
- Manual Over Ride Switch










SIZE :

TYPE

WATTS

Kg/Cm<sup>2</sup>







# 3/2 & 5/2 Way Convertible

# **Spool Type Single & Double Namur**

### Solenoid Valve

MODEL : AMV-NAM-220

Kg/Cm2: 1.5 TO 8

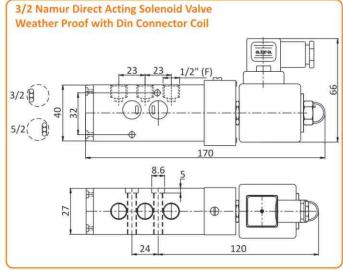
TYPE:

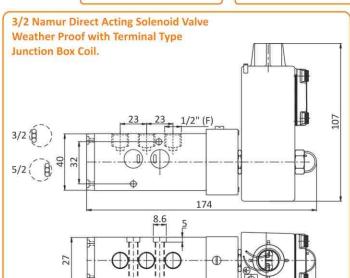
WATTS: VOLTS: 230 V AC



Offers 3/2 & 5/2 Way Convertible Poppet Type Namur Solenoid Valve. Opens and shuts by given electrical signals AC or DC, outputs supply air pressure to valve (Actuator) or changes the output port direction.

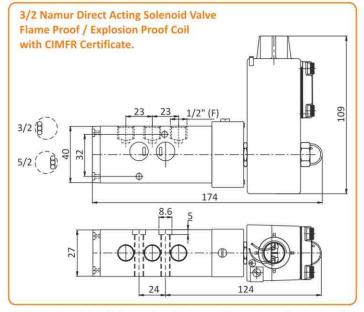
| Item - Type     |             | AMV-NAM-220                  |  |  |  |
|-----------------|-------------|------------------------------|--|--|--|
| Coil Volta      | ge          | All Std. Voltage Available   |  |  |  |
| Frequency       |             | 50 - 60 Hz                   |  |  |  |
| Connection Type |             | 1/4"                         |  |  |  |
| Conduit         |             | PF 1/2"                      |  |  |  |
| Coil Insul      | ation Grade | Class "F"                    |  |  |  |
| Ambient         | Std.        | -20 °C ~ 70 °C (-4 ~ 158 °F) |  |  |  |
| Temp.           | Explosion   | -20 °C ~ 50 °C (-4 ~ 122 °F) |  |  |  |
| Body Mat        | terial      | Aluminium ( SS On Request )  |  |  |  |
| Internal P      | arts        | Aluminium / SS               |  |  |  |
| Seals           |             | NBR ( Viton On Request )     |  |  |  |
| Working         | Pressure    | Upto 10 BAR                  |  |  |  |


### Feature:


- Designed to be Ex d IIC T6 explosion proof grade.
- Easy replacement of coil as both AC and DC type use same enclosure.
- Can test the operation in manual switch without power
- High durability as valve body is pneumatic pressure operating type.
- Can be directly mounted on an actuator. ( NAMUR
- Ideally Suited for spring return actuator for on / off duty dust cap fitted on exhaust ports.
- Interchangeable of AC and DC Coils
- Manual Over Ride Switch












Flame Proof / Explosion Proof

Coil with CIMFR Certificate













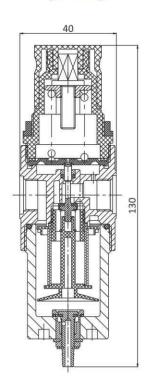




Catalogue No.
APL / 2047

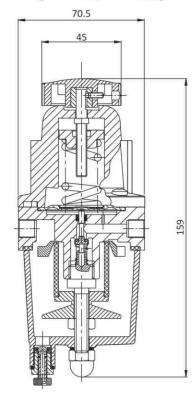


### "aira"


Offers Air filter regulator receives main air pressure and supplies to the desirable level to a positioner or other devices.

### Feature:

- Maintain desirable pressure level, regardless of fluctuation of pressure input
- Aluminium body increases versatility of the product in different environments.
- 5 micron filter sorts minuteness particles in the air.
- Relief function is available which discharge to atmosphere if the outlet pressure is higher than setting pressure.


| Item - Model         | 4FQ                         | 8FQ                         | FRJ                       |  |  |  |
|----------------------|-----------------------------|-----------------------------|---------------------------|--|--|--|
| Air Connection       | 1/4"                        |                             |                           |  |  |  |
| Max. Supply Pressure | 0.5 to 4 Kg/cm <sup>2</sup> | 0.5 to 8 Kg/cm <sup>2</sup> | 1 to 9 Kg/cm <sup>2</sup> |  |  |  |
| Gauge Connection     | 1/8"                        |                             |                           |  |  |  |
| Ambient Temperature  | -20° ~ 120° (High           | n Temp.) -40° ~ 120         | °C (low Temp.)            |  |  |  |
| Min Filtering Size   | 5 Micron                    |                             |                           |  |  |  |
| Material             | Aluminium Pressure Die Cast |                             |                           |  |  |  |

# (FRJ)





(4FQ/8FQ)





### Air Volume Booster

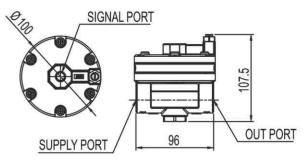
Catalogue No.
APL / 2048





### "aira"

Offers Volume booster relay VB-01, VB-02, VB-03 used in pneumatic control valve which receives positioners's output single and supply air pressure actuator for reduce response and adjusting time.


| Valve Model          | VB - 01                | VB - 0                                                              | 02                        | VB - 03 |  |  |  |  |
|----------------------|------------------------|---------------------------------------------------------------------|---------------------------|---------|--|--|--|--|
| Max. Supply Pressure | Max. 1Mpa ( 10 Bar )   |                                                                     |                           |         |  |  |  |  |
| Max. Output Pressure | Max. 0.7Mpa ( 7 Bar    | Max. 0.7Mpa ( 7 Bar )                                               |                           |         |  |  |  |  |
| In/Output Connection | 1:1                    | 1:1                                                                 |                           |         |  |  |  |  |
| Signal Connection    | 1/4"                   | 1/2'                                                                | e                         | 3/4"    |  |  |  |  |
| Linearity            | 1/4"                   | 1/4'                                                                | r.                        | 1/4"    |  |  |  |  |
| Hysteresis           | 1%                     |                                                                     |                           |         |  |  |  |  |
| ambient Temp.        | -20 °C ~ 70 °C (St'nd) | -20 °C ~ 70 °C (St'nd), -20 °C ~ 120 °C (High), -40 °C ~ 70 °C (Lov |                           |         |  |  |  |  |
| Material             | Aluminium Die          | e Cast                                                              | Stainless Steel 304 / 316 |         |  |  |  |  |

### Features:

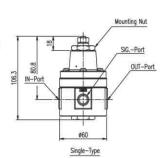
- Improves speed of valve movement.
- Improves stability with by-pass controls.
- Reacts to sudden change in supply pressure.
- Fixed dead band due to the seal to seal type of supply and exhaust pressure.

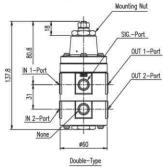
### Function:

- Supplies constant air pressure at the rate of 1 · 1
- By-passing control enhance safety of control valve.
- Responses to slight changes in input signal, which increases accuracy of output of air pressure to actuator.
- Built-in 100 mesh screen filters dusts in the air.



# Single & Double Air Lock Valve


Catalogue No. APL / 2049




| Model                     | ALV - 1                         | ALV - 11                     | SLV - 1                   | SLV - 11 |  |  |  |
|---------------------------|---------------------------------|------------------------------|---------------------------|----------|--|--|--|
| Material                  | Aluminiu                        | m Die Cast                   | Stainless Steel 304 / 316 |          |  |  |  |
| Max. Supply Pressure      |                                 | Max. 10.2 Kg/                | cm² ( 142 PSI )           |          |  |  |  |
| Max. Single Pressure      | Max. 7.1 Kg/cm² ( 1000 PSI )    |                              |                           |          |  |  |  |
| Setting Pressure Range    | 1.4-7.1 Kg/cm² ( 20 ~ 100 PSI ) |                              |                           |          |  |  |  |
| Flow Capacity (Cv)        |                                 | 0                            | .9                        |          |  |  |  |
| In/Output Port Connection |                                 | PT (NP                       | T) 1/4"                   |          |  |  |  |
| Signal Port Connection    |                                 | PT (NP                       | T) 1/4"                   |          |  |  |  |
| Differential Pressure     |                                 | Below 0.1 Kg/cm² ( 1.4 PSI ) |                           |          |  |  |  |
| Hysteresis                | 1%                              |                              |                           |          |  |  |  |
| ambient Temp.             | -20 °C ~ 70 °C                  |                              |                           |          |  |  |  |

### Features:

- Due to its compact size and light weight, Lock up valve can be installed without bracket.
- It responses to less than 0.1 Kgf/ Pressure cm² Change/s.
- Epoxy powder coating resists against the corrosion.
- 100 mesh screen filters small dust entering.











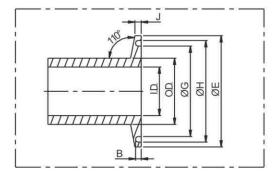












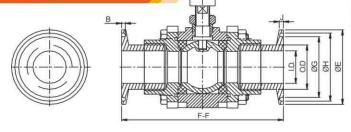



### **Salient Features**

- Guaranteed Surface finish Electro-polishing in valve and the T.C. ends Dimensional Accuracy
- No gaps in joints Easy to disassemble
- "Airmax" has inhouse facilities for electro-finishing to the valves and T.C. ends Electro-polishing Treatment, which...
- Improve sanitising results and reduces down time.
   Maximise passivation and improves corrosion resistance.
   Redduces friction conefficient.
   Offers longer shelf life.

### TC END Connector

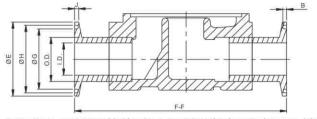





### **Dimensions**:

(All dimensions are in MM)

| Valv | e Size | ØE   | ØG   | ØH   | LD.  | O.D. | 7   | В   |
|------|--------|------|------|------|------|------|-----|-----|
| MM   | Inch   | ØE.  | ØG   | ЮП   | I.D. | O.D. | J   | В   |
| 15   | 1/2"   | 34   | 25.5 | 29.5 | 12.5 | 18.5 | 2.8 | 1.5 |
| 20   | 3/4"   | 34   | 25.5 | 29.5 | 17   | 23   | 2.8 | 1.5 |
| 25   | 1"     | 50.5 | 42   | 46   | 24   | 31   | 2.8 | 1.5 |
| 40   | 1.1/2" | 50.5 | 42   | 46   | 32   | 41   | 2.8 | 1.5 |
| 50   | 2"     | 64   | 55.5 | 59.5 | 42.5 | 52.5 | 2.8 | 1.5 |
| 65   | 2.1/2" | 77.4 | 68.6 | 72.6 | 60.3 | 70   | 2.8 | 1.5 |
| 80   | 3"     | 90.9 | 81.3 | 85.3 | 73   | 83   | 2.8 | 1.5 |


### **Ball Valve**



### Dimensions:

| Valve | Size   | ØE   | ØG   | ØH   | I.D. | O.D. | J   | F-F   | В   |
|-------|--------|------|------|------|------|------|-----|-------|-----|
| MM    | Inch   | WE.  | 100  | S/H  | LD.  | O.D. | 3   | per:  | D   |
| 15    | 1/2"   | 34   | 25.5 | 29.5 | 12.5 | 18.5 | 2.8 | 81    | 1.5 |
| 20    | 3/4"   | 34   | 25.5 | 29.5 | 17   | 23   | 2.8 | 86.7  | 1.5 |
| 25    | 1"     | 50.5 | 42   | 46   | 24   | 31   | 2.8 | 88.5  | 1.5 |
| 40    | 1.1/2" | 50.5 | 42   | 46   | 32   | 41   | 2.8 | 106.5 | 1.5 |
| 50    | 2"     | 64   | 55.5 | 59.5 | 42.5 | 52.5 | 2.8 | 134.6 | 1.5 |
| 65    | 2.1/2" | 77.4 | 68.6 | 72.6 | 60.3 | 70   | 2.8 | 187   | 1.5 |
| 80    | 3"     | 90.9 | 81.3 | 85.5 | 73   | 83   | 2.8 | 187   | 1.5 |

### ISD / GSD / STEAM Solenoid Valve



### Dimensions:

### (All Dimensions are in mm)

(All Dimensions are in mm)

| Valve | e Size | OE.  | ØG   | ØH   | 1.D. | O.D. | i i | F-F  | ь   |
|-------|--------|------|------|------|------|------|-----|------|-----|
| MM    | Inch   | ØE   | 200  | 32/H | tiD. | U.U. | J   | I SI | В   |
| 15    | 1/2"   | 34   | 25.5 | 29.5 | 12.5 | 18.5 | 2.8 | 95   | 1.5 |
| 20    | 3/4"   | 34   | 25.5 | 29.5 | 17   | 23   | 2.8 | 110  | 1.5 |
| 25    | 1"     | 50.5 | 42   | 46   | 24   | 31   | 2.8 | 125  | 1.5 |
| 40    | 1.1/2" | 50.5 | 42   | 46   | 32   | 41   | 2.8 | 150  | 1.5 |
| 50    | 2"     | 64   | 55.5 | 59.5 | 42.5 | 52.5 | 2.8 | 165  | 1.5 |



# **Conversion Factors**



The following table gives conversions of Imperial and discountinued Metric units in to preferred SI units and others acceptable units. For most practical the approximate conversion will prove adequate but for more critical use the second set of conversion factors should be used.

| Form<br>Old Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To<br>SI Unit                                                                                                                                                                                                           | Approximate conversion                                                                                                                                             | Accuracy                                                                               | Conversion for<br>greater accurcy                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v                                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| bf/in² (psig) bf/in² (psig) bf/in² (psig) bf/in² (psig) bf/in² (psig) bf/in² (psig) (Gf/cm² or kp/cm²) (Gf/cm² or kp/cm²) (Gf/cm² or kp/cm²) (Aff/cm² or kp/cm²) (Aff/cm²) (Aff/ | bar N/m² kilopsacal (kpa) megapascal (Mpa) bar N/m² kilopsacal(kpa) megapascal (Mpa) bar N/m² kilopsacal(kpa) megapascal (Mpa) megapascal (Mpa) milibar (mbar) milibar (mbar) milibar (mbar) milibar (mbar) bar bar bar | x7then÷100<br>x7000<br>x7<br>x7 then÷1000<br>x1<br>x100000<br>x100<br>÷10<br>x1<br>x100000<br>x100<br>÷10<br>x10 then÷4<br>x10<br>x9 then÷7<br>x10000 then÷7<br>x1 | 1.5% 1.5% 1.5% 1.5% 2.0% 2.0% 2.0% 2.0% 1.3% 1.3% 1.3% 1.3% 0.6% 2.0% 0.04% 0.04% 7.5% | ÷ 14.5<br>x6895<br>x6.9<br>x6.9 then ÷ 1000<br>x0.98<br>x98070<br>x98<br>x1.013<br>x101300<br>x101.3<br>x0.101<br>x2.49<br>x0.098<br>x1.33<br>x1.33<br>x154<br>X1.07 |
| Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Cubic feet per minute (cfm) Cubic feet per minute (cfm) Cubic feet per hour itres/minute (L/m) Cubic metres/hour (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cubic Decimeters/second (dm³/s) Cubic meters/second (m³/s) Cubic decimeters/second (dm³/s) Cubic decimeters/second (dm³/s) Cubic decimeters/second (dm³/s)                                                              | ÷ 2<br>÷ 2 then 1000<br>x8 then 1000<br>x2 then 100<br>÷ 4                                                                                                         | 5.9%<br>5.9%<br>1.7%<br>20%<br>10%                                                     | x4.472<br>x0.472 then ÷ 1000<br>x7.9 then ÷ 1000<br>÷ 60<br>x0.28                                                                                                    |
| The litre is equal to 1 cubic decimetre (dm<br>For more precise work, increase the volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                    | n be considered to be                                                                  | e the same.                                                                                                                                                          |
| orce (Weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| ound - force (ibf)<br>(ilopound (kp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | newtone (N)<br>newtone (N)                                                                                                                                                                                              | x4<br>x10                                                                                                                                                          | 10%<br>2%                                                                              | x9 then ÷ 2<br>x9.8                                                                                                                                                  |
| orque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Pound - force foot (lbf ft) Pound - force inches (lbf ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | newtone-metre (N m)<br>newtone-metre (N m)                                                                                                                                                                              | x3 then ÷ 2<br>÷ 10%                                                                                                                                               | 10%<br>11%                                                                             | x1.36<br>x0.11                                                                                                                                                       |
| Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Inch (in) Foot (ft) Yard (yd) n/16 inch n/1000 inch Mile (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | milimetres (mm) meter (m) meter (m) milimeters (mm) milimeters (mm) kilometer (km)                                                                                                                                      | ÷ 4 then x100<br>÷ 3 then x10<br>x1<br>'n'x3 then ÷ 2<br>'n'÷ 4 then ÷ 10<br>x1.5                                                                                  | 1.6%<br>1.6%<br>9%<br>5.5%<br>1.6%<br>6.8%                                             | x25.4<br>x0.305<br>x12 then ÷ 13<br>x1.6<br>x0.0254<br>x1.609                                                                                                        |
| Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Pound (lb) Pound (lb) Ounce (oz) Long Ton (UK) Short Ton (USA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kilogramme (mm)<br>gramme (g)<br>gramme (g)<br>Tonne (t)<br>tonne (t)                                                                                                                                                   | ÷2<br>x1000 then÷2<br>x30<br>x1<br>x9 then÷10                                                                                                                      | 10%<br>10%<br>6%<br>1.6%<br>0.8%                                                       | x0.45<br>x454<br>x28.4<br>x1.02<br>x0.91                                                                                                                             |
| Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Horsepower (hp)<br>Horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | watt (W)<br>kilowatt (kw)                                                                                                                                                                                               | x3 then ÷ 4 thenx1000<br>x3 then ÷ 4                                                                                                                               | 0.6%<br>0.6%                                                                           | x746<br>x0.746                                                                                                                                                       |
| Energy, Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Foot-pound-force (ft.lbf)<br>Kilogramme-force metres (kgf. m)<br>Britis thermal unit (Btu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Joule (J)<br>Joule (J)<br>Joule (J)                                                                                                                                                                                     | x9 then÷7<br>x10<br>x1000                                                                                                                                          | 5.5%<br>1.3%<br>5.5%                                                                   | x1.35<br>x9.807<br>x1055                                                                                                                                             |
| Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Gallon (UK) (gal) Gallon (UK) (gal) Pint (UK) (pt) Pint (USA) (pt) Fluid ounce (UK) (fl oz) Fluid ounce (UK) (fl oz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | litre (L) litre (L) litre (L) litre (L) Cubic centimetre (cm³) Cubic centimeter (cm³)                                                                                                                                   | x5<br>x4<br>x6 then÷10<br>÷2<br>x30<br>x30                                                                                                                         | 10%<br>5.7%<br>5.6%<br>5.7%<br>5.6%<br>1.4%                                            | x4.54<br>x3.79<br>x0.57<br>x0.47<br>x28.4<br>x29.6                                                                                                                   |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                        |                                                                                                                                                                      |
| Fahrenheit (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Celsius (°C)                                                                                                                                                                                                            | ÷32 then÷2                                                                                                                                                         | 10% between<br>0°F and 400°F                                                           | +40 then x 5 then<br>÷9 then ÷40 then                                                                                                                                |

















# **Material Selection & Properties Chart**



|                                                   | RTIES                                           | Y.S.Mpa ELONGATION% | -95             | 2                | 22        | 35                | 30                | 17                  |
|---------------------------------------------------|-------------------------------------------------|---------------------|-----------------|------------------|-----------|-------------------|-------------------|---------------------|
|                                                   | PHYSICAL PROPERTIES                             | Y.S.Mpa             | 230             | 370              | 250       | 205               | 205               | 280                 |
|                                                   | PHYSIC                                          | T.S.Mpa             | 200             | 009              | 485-655   | 485               | 485               | 480                 |
|                                                   |                                                 | >                   | - 10            | *                | 0:30      | É                 | ì                 | .9                  |
|                                                   |                                                 | 3                   | 0.10            | ε                | 0:30      | 63                | 3.                | ÷4                  |
| 70                                                | fied                                            | Мо                  | , P             | Ř                | 0.20      | 0.50              | 2.00 TO<br>3.00   | 0.50                |
| ial Use                                           | nless Speci                                     | z                   | (9)             | 18.0 TO<br>22.0  | 0.50      | 8.00 TO<br>21.00  | 9.00 TO<br>21.00  | 0.40                |
| Chemical And Physical Properties Of Material Used | CHEMICAL PROPERTIES (%) - Max. unless Specified | ბ                   | 0.15            | 1.00 TO<br>2.50  | 0.50      | 18.00 TO<br>21.00 | 18.00 TO<br>21.00 | 1.00                |
| ties Of                                           | PERTIES (9                                      | S                   | 1.20 TO<br>1.80 | 1.00 TO<br>2.80  | 0.60      | 2.00              | 1.50              | ų.                  |
| Prope                                             | MICAL PRO                                       | S                   | 0.080           | 9.               | 0.045     | 0.04              | 0.04              | 8                   |
| hysical                                           | SE                                              | ۵                   | 0.400           | 0.080            | 0.04      | 0.04              | 0.04              | a                   |
| I And P                                           |                                                 | M                   | 0.60 TO         | 0.70 TO<br>1.50  | 1.00      | 1.50              | 1.50              | U.S.                |
| hemica                                            |                                                 | v                   | 3.50            | 3.00             | 0:30      | 0.08              | 0.08              | 3                   |
| 0                                                 | GENERAL                                         |                     | CAST            | S.G.IRON         | CARBON    | 5.5.304           | 5.5.316           | CAST ALLOY<br>STEEL |
|                                                   |                                                 | GRADE               | FG-200          | SG-60            | GR-2      | GR-3              | GR-3              | GR-4                |
|                                                   | ARD                                             | INDIAN              | 1.5210          | 1.51865          | 1.52856   | 1.57806           | 1.57806           | 1.53038             |
|                                                   | STANDARD                                        | GRADE               | CIB             | 60-40-18 1.S1865 | WCB       | CF8               | CF8M              | WC6                 |
|                                                   |                                                 | AMERICAN            | ASTM-A216       | ASTM-A536        | ASTM-A216 | ASTM-A351         | ASTM-A351         | ASTM-A217           |

| Valve Body Materials | Specifications & Grade | ASTM A 126 Gr. CIB I.S. 210 Gr. F.G. 200, DIN, 0.6025 (GG.25) | ASTM A 351 Gr. CF8, I.S. 7806 Gr. 3 DIN, 1.4410 (G-X10CRNIMO 189) | ASTM A 536 Gr. 60-40-18, Class, I.S. 1865 Gr. S.G. 600/3 DIN 0.7043 (GGG-40-3) | ASTM A 216 Gr. WCB, I.S. 2856 DIN 1.0619 (GS-C25) | ASTM A 351 Gr. CF8M, I.S. 7806 Gr.3 DIN 1.4410 (G-X 5CRNIMO 189) | ASTM A 217 Gr, WCB, I.S 3038 Gr-4 DIN 1.7357 (GS-17 CRMO.55) |
|----------------------|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|
| Vah                  | General Name           | Cast Iron                                                     | Stainless Steel                                                   | SG Iron                                                                        | Cast Iron                                         | Stainless Steel                                                  | Cast Alloy Steel                                             |
|                      | Rating                 | ANSI B16.5 Class 150 PN-10                                    | ANSI B16.5 Class 300 PN-16                                        | ANSI B16.5 300 PN-25                                                           | ANSI B16.5 Class                                  | 150, 300, 600                                                    | PN-16, PN-40                                                 |



## Material Selection Chart



# **COMPATIBILITY CHART**

|                    |                              |                                 |                       |                        | 4 247                                  |                   |                             |                              |                                 |                       |                        | 2 495                                  |                   |
|--------------------|------------------------------|---------------------------------|-----------------------|------------------------|----------------------------------------|-------------------|-----------------------------|------------------------------|---------------------------------|-----------------------|------------------------|----------------------------------------|-------------------|
| CHEMICALS          | A 126<br>CIB<br>CAST<br>IRON | A 126<br>WCB<br>CARBON<br>STEEL | A 351<br>CF8<br>SS304 | A 351<br>CF8M<br>SS316 | A 217<br>WC6<br>CAST<br>ALLOY<br>STEEL | POLY<br>PROPYLENE | CHEMICALS                   | A 126<br>CIB<br>CAST<br>IRON | A 126<br>WCB<br>CARBON<br>STEEL | A 351<br>CF8<br>SS304 | A 351<br>CF8M<br>SS316 | A 217<br>WC6<br>CAST<br>ALLOY<br>STEEL | POLY<br>PROPYLENE |
| ACETIC ACID        | N                            | N                               | С                     | С                      | Υ                                      | Y                 | HYDROGEN SULFIDE            | N                            | N                               | Υ                     | Υ                      | Υ                                      | Υ                 |
| ACETALDEHYDE       | Y                            | Υ                               | Υ                     | Υ                      | ۵                                      | Y                 | INDOFORM                    | 5 <del>-0</del> 5            | Ν                               | Υ                     | Υ                      | *                                      | N                 |
| ACETONE            | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | Y                 | KEROSENE                    | 175                          | Υ                               | Υ                     | Υ                      | 5                                      | Υ                 |
| AMMONIA            | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | Y                 | LACTIC ACID                 | 120                          | N                               | Υ                     | Y                      | ä                                      | Y                 |
| AMMONIUM HYDROXIDE | -                            | N                               | Υ                     | Υ                      | 2                                      | Y                 | LITHIUM                     | :=:                          | С                               | Υ                     | Y                      | =                                      | N                 |
| AMMONIUM NITRATE   | N                            | Υ                               | Y                     | Υ                      | Υ                                      | Y                 | MAGNESIUM HYDROXIDE         | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | Y                 |
| ASPHALT            | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | Y                 | MAGNESIUM SULFATE           | :55                          | С                               | Υ                     | С                      | ā                                      | Y                 |
| BEER               | С                            | С                               | Υ                     | Υ                      | Υ                                      | Υ                 | METHYL CHLORIDE             | *                            | N                               | Υ                     | С                      |                                        | *                 |
| BENZENE (BENZOL)   | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | N                 | MILK                        | N                            | N                               | Y                     | Υ                      | Υ                                      | N                 |
| BORIC ACID         | N                            | N                               | Υ                     | Υ                      | Υ                                      | Y                 | MERCURY                     | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | Y                 |
| BUTTER MILK        | -                            | N                               | Υ                     | Υ                      | 8                                      | N                 | METHANOL                    | Y                            | Υ                               | Υ                     | Υ                      | Y                                      | Y                 |
| CARBONIC ACID      | С                            | С                               | С                     | С                      | -                                      | N                 | NATURAL GAS                 | Y                            | Υ                               | Υ                     | Y                      | Υ                                      | Y                 |
| CARBON DIOXIDE     | Υ                            | Y                               | Y                     | Υ                      | Υ                                      | Y                 | NITRIC ACID                 | N                            | N                               | Y                     | С                      | N                                      | Υ                 |
| (DRY & WET)        | 2.00                         |                                 |                       | 1.6                    |                                        |                   | OLEIC ACID                  | N                            | N                               | Y                     | Y                      | Υ                                      | Y                 |
| CHLORINE (DRY)     |                              | Y                               | Υ                     | С                      | С                                      | N                 | OXYGEN                      | Υ                            | Y                               | Y                     | Y                      | Υ                                      | N                 |
| CHLOROFORM         | -                            | Y                               | Y                     | Y                      | -                                      | N                 | PARAFFIN                    |                              | Y                               | Υ                     | Y                      | -                                      | С                 |
| COALTAR            | Υ                            | С                               | Y                     | Y                      | Ÿ                                      | N                 | PETROLEUM OILS              | Y                            | Y                               | Y                     | Y                      | Y -                                    | N                 |
| COTTONSEED OIL     | -                            | Y                               | C                     | Y                      | -                                      | Y                 | POTASSIUM CHLORIDE          | C                            | C                               | Y                     | Y                      | -                                      | Y                 |
|                    |                              |                                 | Y                     |                        |                                        | Y                 | PHOSPHORIC ACID PICRIC ACID | N                            | N<br>N                          | Y                     | Y                      | 9                                      | Y                 |
| COPPER NITRATE     | Y                            | N<br>Y                          | Y                     | C                      | Y                                      | N                 | POTASSIUM HYDROXIDE         | C                            | C                               | Y                     | Y                      | 4                                      | Y                 |
| ETHANE             | Y                            |                                 |                       | Y                      |                                        |                   | PROPANE GAS                 | Y                            | Y                               | Y                     | Y                      | Υ                                      | С                 |
| ETHER              | C                            | С                               | Y                     | Y                      | Y                                      | N                 | SILVER NITRATE              | N                            | N                               | Y                     | Y                      | С                                      | Y                 |
| ETHYLENE           | Y                            | Υ                               | Υ                     | Υ                      | Υ                                      | N                 | SOAP                        | -                            | С                               | С                     | С                      | -                                      | Y                 |
| ETHYLCHLORIDE      | N                            | N                               | Υ                     | Υ                      | -                                      | N                 | SODIUM ACETATE              | Υ                            | Y                               | С                     | Y                      | Υ                                      | Y                 |
| FISH OIL           | -                            | С                               | С                     | Υ                      | Υ                                      | N                 | SODIUM CARBONATE            | Y                            | Y                               | Y                     | Y                      | Y                                      | Y                 |
| FORMALDEHYDE       | С                            | С                               | Υ                     | С                      | -                                      | Y                 | SODIUM CYANIDE              |                              | С                               | С                     | С                      |                                        | Y                 |
| FUEL OIL           | -                            | С                               | Υ                     | Υ                      | Υ                                      | N                 | SODIUM HYDROXIDE            | Y                            | Y                               | Y                     | Y                      | Y                                      | Y                 |
| FURFURAL           | Y                            | Υ                               | С                     | Υ                      | С                                      | N                 | SODIUM NITRATE              | 141                          | С                               | Υ                     | Y                      |                                        | Y                 |
| FORMIC ACID        | N                            | N                               | Υ                     | Υ                      | С                                      | С                 | SULFUR                      | Υ                            | Υ                               | Υ                     | Y                      | Υ                                      | N                 |
| FRUIT JUICES       | -                            | С                               | Υ                     | Υ                      | -                                      | N                 | STEAM                       | .=:                          | Υ                               | Υ                     | Υ                      | 5                                      | N                 |
| GASOLINE (REFINED) | Υ                            | Y                               | Υ                     | Υ                      | Υ                                      | N                 | SULFUR DIOXIDE              | Y                            | С                               | Υ                     | Υ                      | Υ                                      | Y                 |
| GLUCOSE            | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | Y                 | TAR                         | Υ                            | Υ                               | Υ                     | Υ                      | Υ                                      | N                 |
| GLYCERINE          | -                            | С                               | N                     | Υ                      | 7                                      | Υ                 | TURPENTINE                  | С                            | С                               | Υ                     | Υ                      | Υ                                      | N                 |
| HYDROFLUORIC ACID  | Ν                            | С                               | Υ                     | С                      | С                                      | Y                 | VEGETABLE OIL               | (7)                          | N                               | С                     | С                      | 5                                      | С                 |
| HYDROGEN GAS       | Υ                            | Υ                               | С                     | Υ                      | Υ                                      | Y                 | WATER                       | -                            | Υ                               | Υ                     | Υ                      | Ē                                      | Y                 |
| HYDROGEN FLUORIDE  | =                            | С                               | С                     | С                      | =                                      | N                 | WHISKEY AND WINES           | N                            | N                               | Υ                     | Υ                      | Υ                                      | Υ                 |
| HYDROGEN PEROXIDE  | Υ                            | N                               | Υ                     | Υ                      | ā                                      | С                 | ZINC SULFATE                | N                            | N                               | Υ                     | Υ                      | Υ                                      | Y                 |

Y - Can be used

C - Try with caution

N - Not recommended

The Table above are purely recommendation only. We do not guarantee the Performance.



















# **Material Specification**



# **Temperature Table For Saturated Steam Under Gauge Pressure**

| Pressure<br>(bar) | Temp<br>(°C) | Pressure<br>(bar) | Temp<br>(°C) |
|-------------------|--------------|-------------------|--------------|
| 0.5               | 111          | 6                 | 165          |
| 1                 | 120          | 7                 | 170          |
| 1.5               | 127          | 8                 | 175          |
| 2                 | 134          | 9                 | 180          |
| 2.5               | 139          | 10                | 184          |
| 3                 | 144          | 11                | 188          |
| 3                 | 148          | 12                | 191          |
| 4                 | 152          | 13                | 195          |
| 4.5               | 155          | 14                | 198          |
| 5                 | 159          | 15                | 200          |

# **Plug and Seat Materials**

| Plug Type |                         | Valve Seat                                            | Plug and Plug Spindle                                 |
|-----------|-------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Parabolic | Equal percentage linear | S.S.AISI-304<br>S.S.AISI-316<br>I.S 6603<br>DIN1.4308 | S.S.AISI-304<br>S.S.AISI-316<br>I.S 6603<br>DIN1.4308 |
| Flat      | On-off                  | S.S.AISI-304<br>S.S.AISI-316<br>I.S 6603<br>DIN1.4308 | S.S.AISI-304<br>S.S.AISI-316<br>I.S 6603<br>DIN1,4308 |
| Three-way | Linear, On-Off          | S.S.AISI-304<br>S.S.AISI-316<br>I.S 6603<br>DIN1.4308 | S.S.AISI-304<br>S.S.AISI-316<br>I.S 6603<br>DIN1.4308 |

| Rating                | Valve Body Material | Maximum |       |       |       |       |       |       |       |       |       |
|-----------------------|---------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ANSI B 16.5           |                     | 120°C   | 200°C | 250°C | 300°C | 350°C | 400°C | 425°C | 450°C | 475°C | 500°C |
| Class 150             | Cast Iron           | 16      | 13    | 11    | 10    |       |       |       |       |       |       |
| 300<br>PN-10<br>PN-16 | Stainless Steel     | 16      | 13    | 11    | 10    |       |       |       |       |       |       |
| Class<br>300<br>PN-25 | S.G. Iron           | 25      | 20    | 18    | 16    | 12    |       |       |       |       |       |
| Class                 | Cast Steel          | 40      | 35    | 32    | 28    | 24    | 21    |       |       |       |       |
| 150<br>300<br>600     | Stainless Steel     | 40      | 35    | 32    | 28    |       |       |       |       |       |       |
| PN-16<br>PN-40        | Cast Alloy Steel    | 40      | 40    | 40    | 40    | 38    | 36    | 35    | 34    | 33    | 29    |



### Installation and Maintenance



: 1. Stopping & Starting flow. 2. Moderate Throtting. 3. Flow Diversion.

Caution: These valves are not recommended for Flow Control purposes.

Service: 1. Gases. 2. Liquids. 3. Non-Abrasive slurries. 4. Vacuum. 5. Cryogenic.

### Installation

Please adhere to the below mentioned instructions prior and during installation

- 1. Check to ensure that the i) Size ii) Pressure Rating iii) Material of construction iv) End connection are suitable for the service condition of your application.
- 2. Remove all end protectors and covers provided, except those provided on the Handles and Levers.
- 3. Blow air to clean any grit and dirt which may have entered the valve during storage. Caution: Non compliance will result in damage to the critical components in the valve.
- 4. Pipeline strainers should be provided upstream to prevent any abrasive particles from entering the valve and damaging the seat.
- 5. Do not subject the valve to line distortion stress by ensuring that flat flanges and pipeline are square and true. The pipes should be properly supported to prevent line buckling under the weight of the valve (especially in larger size valves).
- 6. All the PTFE soft seats should be removed prior to welding any valve onto the pipeline. Proper re-fitment should be carried out at site by competent engineers. Caution : Heat generated by welding may damage PTFE. (This point is not valid in Fire-Tested valves).
- 7. Slag splatter should be removed from the pipeline. Extreme Caution: Slag splatter is extremely detrimental to the critical components of the valve, and is the chief cause for failure of valves on new pipelines.
- 8. Although all valves are tested prior to despatch, it is possible that some minor adjustments are required, especially in the Gland, when the valve is on stream.

### Maintenance

Regular maintenance is the most efficient means of ensuring continued operational efficiency. Regular scheduled inspections of all valves is essential, especially those valves which are operated occasionally, such as isolation and emergency valves. Caution: We will not be responsible for any jamming and dis-satisfactory performance of our valves due to extended periods of disuse.

- 1. All gland packing should be checked to see if pressure seal is being maintained, replace/add where necessary.
- 2. All discs/balls/seatings should be examined to ascertain the exact extent of wear and damage. If necessary, either replace on site or refer to our Service Department.
- 3. Cover and flange gaskets should be inspected and replaced where necessary.
- 4. Handles/Levers should be re-aligned, and care should be taken to ensure that the valve closes fully.
- 5. All nuts/bolts should be appropriately tightened and the condition of the threads on them should be checked.
- 6. All soft components should be replaced routinely, and compulsorily after 2000 operations.

### **Trouble Shooting & Remedies To Common Problems**

| PROBLEM                     | REMEDY                                                                                             |
|-----------------------------|----------------------------------------------------------------------------------------------------|
| Leakage from Gland/Bonnet   | Appropriate tightening of Gland Nuts/ / Bolts and Stem Nuts. Alternatively: Replace Gland Packing. |
| Leakage from Seat           | Appropriate tightening of Body Bolts / Nuts. Alternatively: Replace Seat / Ball Seal.              |
| Leakage from Connector Seal | Appropriate tightening of Body Bolts / Nuts. Alternatively: Replace Connector Seal.                |



























Mfg. & Mkt by:

# aira Euro automation pvt. ltd.

ISO 9001:2008 Certified Co. Ahmedabad-382 405, INDIA

www.airaindia.com/www.airaeuro.com







### Available At:



Tel. +1.713.592.0869 info@valvact.com www.valvact.com Pub. On AUT\_January\_2015\_5K